A Transitivity Aware Matrix Factorization Model for Recommendation in Social Networks
نویسندگان
چکیده
Recommender systems are becoming tools of choice to select the online information relevant to a given user. Collaborative filtering is the most popular approach to building recommender systems and has been successfully employed in many applications. With the advent of online social networks, the social network based approach to recommendation has emerged. This approach assumes a social network among users and makes recommendations for a user based on the ratings of the users who have direct or indirect social relations with the given user. As one of their major benefits, social network based approaches have been shown to reduce the problems with cold start users. In this paper, we explore a model-based approach for recommendation in social networks, employing matrix factorization techniques. Advancing previous work, we incorporate the mechanism of trust propagation into the model in a principled way. Trust propagation has been shown to be a crucial phenomenon in the social sciences, in social network analysis and in trust-based recommendation. We have conducted experiments on two real life data sets. Our experiments demonstrate that modeling trust propagation leads to a substantial increase in recommendation accuracy, in particular for cold start users.
منابع مشابه
A social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملHybrid Deep-Semantic Matrix Factorization for Tag-Aware Personalized Recommendation
Matrix factorization has now become a dominant solution for personalized recommendation on the Social Web. To alleviate the cold start problem, previous approaches have incorporated various additional sources of information into traditional matrix factorization models. These upgraded models, however, achieve only “marginal” enhancements on the performance of personalized recommendation. Therefo...
متن کاملPoint-of-Interest Recommendation in Location Based Social Networks with Topic and Location Awareness
The wide spread use of location based social networks (LBSNs) has enabled the opportunities for better location based services through Point-of-Interest (POI) recommendation. Indeed, the problem of POI recommendation is to provide personalized recommendations of places of interest. Unlike traditional recommendation tasks, POI recommendation is personalized, locationaware, and context depended. ...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملFused Matrix Factorization with Geographical and Social Influence in Location-Based Social Networks
Recently, location-based social networks (LBSNs), such as Gowalla, Foursquare, Facebook, and Brightkite, etc., have attracted millions of users to share their social friendship and their locations via check-ins. The available check-in information makes it possible to mine users’ preference on locations and to provide favorite recommendations. Personalized Point-of-interest (POI) recommendation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011